Finite element modeling of nanoindentation to extract load-displacement characteristics of bulk materials and thin films
نویسندگان
چکیده
The finite element modeling (FEM) technique has been applied to study the loading-unloading characteristics, stress and strain fields of the bulk materials such as titanium, iron, copper and thin films of titanium and copper subjected to Berkovich nanoindentation process. The loading and unloading curves obtained from numerical simulation results are compared with the curves obtained earlier through the experimental results and a good agreement has been found. The substrate effect is ignored and only thin film behaviour under indentation is considered. The thin films are indented within 5% thickness, rather than 10% rule of thumb.
منابع مشابه
Parameter Estimation of a Nonlinear Burgers Model using Nanoindentation and Finite Element-based Inverse Analysis
Nanoindentation involves probing a hard diamond tip into a material, where the load and the displacement experienced by the tip is recorded continuously. This load-displacement data is a direct function of material's innate stress-strain behavior. Thus, theoretically it is possible to extract mechanical properties of a material through nanoindentation. However, due to various nonlinearities ass...
متن کاملNumerical Modeling of Railway Track Supporting System using Finite-Infinite and Thin Layer Elements
The present contribution deals with the numerical modeling of railway track-supporting systems-using coupled finite-infinite elements-to represent the near and distant field stress distribution, and also employing a thin layer interface element to account for the interfacial behavior between sleepers and ballast. To simulate the relative debonding, slipping and crushing at the contact area betw...
متن کاملModeling Static Bruising in Apple Fruits: A Comparative Study, Part II: Finite Element Approach
ABSTRACT- Mechanical damage degrades fruit quality in the chain from production to the consumption. Damage is due to static, impact and vibration loads during processes such as harvesting, transportation, sorting and bulk storage. In the present study finite element (FE) models were used to simulate the process of static bruising for apple fruits by contact of the fruit with a hard surface. Thr...
متن کاملMechanical Properties of Evaporated Gold Films. Hard Substrate Effect Correction
Nanoindentation tests using the Berkovich indenter tip were performed on 50 and 200 nm thick polycrystalline gold films deposited on hard substrates. Gold film hardness increased with the indentation depth due to the influence of the substrate. A procedure based on the Joslin-Oliver method was introduced to correct for the substrate effect. The method utilizes the fact that the measured elastic...
متن کاملFinite element simulation of the effect of surface roughness on nanoindentation of thin films with spherical indenters
The effect of the surface roughness on nanoindentation results was investigated instancing a series of CrN thin films deposited by unbalanced magnetron sputtering. The arithmetic roughness (Ra) of the films ranged between 2 and 10 nm and was measured by atomic force microscopy. The measured surface topography was incorporated into a finite element model, which allowed simulating the indentation...
متن کامل